
1

Person Following using Histograms of Oriented Gradients

Jonathan Brookshire

iRobot Corporation

8 Crosby Drive, Bedford, MA 01730

jbrookshire@irobot.com

Abstract. In order for robots to effectively interact with people in close proximity, the systems

must first be able to detect, track, and follow people. This paper describes results from the

development of a mobile robot which will follow a single, unmarked pedestrian using vision. This

work demonstrates an improvement over existing pedestrian following applications because (1) it

uses sufficiently strong classifiers such that it does not need to adapt to any particular pedestrian,

(2) uses only vision and does not rely on any laser range devices, (3) provides a single point

benchmark for the level of performance required from a detector to achieve pedestrian following,

and (4) its performance is characterized over several kilometers in both rainy and dry weather

conditions. The system leverages Histograms of Oriented Gradients (HOG) features for pedestrian

detection at over 8 Hz using video from a monochrome camera. The pedestrian’s heading is

combined with distance from stereo depth data to yield a 3D estimate. A particle filter with some

clutter rejection provides a continuous track, and a waypoint follow behavior servos the iRobot

PackBot robot chassis to a desired location behind the pedestrian. The final system is able to

detect, track, and follow a pedestrian over several kilometers in outdoor environments,

demonstrating a level of performance not previously shown on a small unmanned ground vehicle.

Keywords: person following, pedestrian tracking, histogram of oriented

gradients, detection error tradeoff, weather

2

1 Introduction

One of our long term goals is to design systems that enable humans and robots to

work cooperatively, side-by-side in real world environments. Here, we are

interested in situations where the robot and human are adjacent in the environment

and the operation of the robot is not the human’s primary task. Enabling natural

and efficient human interaction with the robot in this kind of situation is an

ambitious goal, requiring advances in the robot’s ability to interpret human

commands and react to its environment with context and high level reasoning.

We concentrate on the first part of the problem: keeping the robot physically

adjacent to the human(s). This task involves detecting a pedestrian, tracking

his/her path, and navigating the robot to a desired location with respect to the

pedestrian. A video of our results is available at [23]. A popular example of a

pedestrian following application is the robotic “mule” that hauls gear and supplies

for a group of dismounted soldiers. The same technology could also be used as a

building block for everything from elder care to smart golf carts.

Computational
payload

Stereo vision
cameras and
IMU “head”

iRobot PackBot
robot chassis

3-DOF “neck”

Fig 1 The robot is an iRobot PackBot chassis (tracked vehicle) augmented with stereo vision

and additional computing power

Our work differs from previous efforts in several ways. First, our system does not

require tuning and does not attempt to learn any particular target. Although on-

line learning can have advantages (e.g., by selecting the target’s resilient features),

the pedestrian’s constantly changing pose, lighting conditions, background, etc.

make this a challenging learning problem. Our system is able to follow a

pedestrian target without any training period or prior knowledge of the specific

target. Second, many approaches rely only on depth data for detection. The

advantages of this approach are reduced data rates and simplified, real-time

detection schemes. Vision, however, offers a rich set of features which can allow

3

pedestrians to be identified where depth data is insufficient. Additionally,

building an approach that relies only on vision allows for the later possibility of

fusing, for example, LIDAR data with visual detections to improve performance.

This is of particular interest when one sensor may fail (e.g., dusty or rainy

conditions). Third, building a complete person following system has allowed us

to establish a single reference point for required detector performance (e.g., false

positive and miss rate). Although this result will not uniquely apply to all

systems, we have found it critical in our practical application, allowing us to

design person detection schemes with a performance goal. Fourth, although many

systems have demonstrated person following, few have quantified the

performance over a variety of operators and over several kilometers of distance in

realistic, all-weather scenarios.

As shown in Fig 2, the pedestrian detection is performed using the video stream

from a single camera of a stereo pair (the stereo depth data is used only to

estimate the pedestrian’s distance). The demonstration was developed on an off-

the-shelf iRobot PackBot. The system was then upgraded with our standard,

modular computational payload (see Fig 1). It provides an Intel 1.2 GHz Core 2

Duo-based computer, GPS (not used), LIDAR (used only for ground truth, see

Following Performance), and IMU. In addition, a Tyzx G2 stereo camera pair

(“head”) is mounted at the top of a 3-DOF neck. During following, only the pan

(left-right camera movement) axis of the neck is moved in an attempt to keep the

target in the center of the field of view. By decoupling the orientation of the head

and the chassis, we are able to maintain track while placing fewer requirements on

the motion of the chassis. The robot has a top speed of about 2.2 m/s (5 MPH)

and the software was written in the iRobot Aware 2.0 Intelligence Software.

We perform several experiments to validate our system’s performance in both dry

and rainy weather conditions. We evaluate the Detection Error Tradeoff (DET)

curve of the pedestrian detector on widely used datasets for comparison to other

algorithms. We also characterize the complete performance of our system

(detector, tracker, and follower) against a ground truth derived from human-

annotated LIDAR, to verify that the end-to-end person following system is

operating correctly.

4

Depth

Robot
Chassis
Control

Robot
Neck

Control

Stereo Vision

Detector
(HOG Features)

Tracker
(Particle Filter) IMU

Follower

Video

Learned
Data

Fig 2 System architecture

1.1 Related work

Because person following must operate in real-time in order to adapt to changes in

the target’s trajectory, many existing person following solutions have found

various ways to simplify the perception problem. Dense depth or scanned range

data have been used to identify and follow people effectively. For example, in our

previous work [2], we used a Support Vector Machine (SVM) trained on depth

data from an infrared ranging SwissRanger. Satake and Minura [1] used the depth

information from stereo cameras and templates to identify people. The system

developed by Kleinehagenbrock [4] fused information from a LIDAR with

estimates based on skin-color to follow people. Other systems [7-9] relied

primarily on LIDAR data to perform following. Our system differs from these in

that we use depth information only to estimate the pedestrian’s distance and not

for detection. This is an important distinction because the depth data may not be

as feature rich or available in all weather conditions (see Performance in Rain).

Note that we focus only on pedestrian (upright, walking people) detection and not

general person (various postures, etc.) detection.

Other methods have been developed that rely primarily on vision for detection,

but attempt to learn features of a particular person on-line. In [3], Kwon

developed a system which uses two cameras and learns a color histogram

describing the pedestrian to follow. The robot developed by Yoshimi [6] used

stereo vision and adjusted the features being tracked based on several conditions.

5

Similar approaches, e.g., [10, 11], use color space or contour detection to find

people. Our system differs from these systems in that we use a different set of

features (see below) and do not adjust our tracker to any particular pedestrian in

the scene. This allows our system to be used with any operator without prior, user-

specific training or tuning.

In addition to these systems, which provide complete person following, our work

is also related to many detection and tracking research efforts. Our detector is

based on the Histogram of Oriented Gradient (HOG) features developed by Dalal

[13, 14] and uses the same machine learning applied by Zhu [12] (see Detection).

HOG features have been shown to be computationally efficient and robust to

lighting and color changes.

The sections that follow describe each aspect of the system in more detail. The

Detection section details the HOG detector and its implementation. The Tracking

section discusses the particle filter implementation used to filter the incoming

detections. Finally, the Following section describes the navigation algorithm used

on the robot.

2 Detection

Our algorithm uses the Histogram of Oriented Gradient (HOG) features originally

developed by Dalal [13, 14]. Zhu [12] applied a series of machine learning

techniques and adaptations to [13], which allowed the system to run in real-time.

Our detection algorithm is similar to that of [12], but we use slightly different

learning parameters (see The Off-Line Learning Process for details) and make a

different trade-off between speed and performance. Due to page limitations, we

provide only a brief discussion of the detection strategy here; we refer the reader

to [12-14] for complete details.

The algorithm works by learning a set of linear Support Vector Machines (SVMs)

trained on positive (pedestrian) and negative (non-pedestrian) training images.

This off-line learning process generates a set of SVMs, weights, and image

regions that can then be used on-line to classify an unknown image as either

positive or negative.

6

2.1 The Features

As with many computer vision applications, part of the challenge is to find a

descriptive set of features. If the feature space is rich enough – that is, it provides

sufficient information to identify targets – these features can be combined with

machine learning algorithms to classify targets and non-targets. The work done in

[14] demonstrated success using HOG features for pedestrian detection. A single

HOG is a way to encode local gradients. In this process, the gradient is first

calculated for each pixel. Next, the training image (see Fig 3) is divided into a

number of sub-windows, often referred to as “blocks”. The blocks span size from

8 to 64 pixels, have various length-to-width ratios, and densely cover the image

(i.e., overlap). Each block is divided into quadrants and the HOG of each

quadrant is calculated. A HOG is a histogram with nine evenly spaced bins for

orientation into which the gradients vote (nine bins was suggested in [13] as being

the most effective for classifying pedestrians). Thus, each quadrant produces nine

features for a total of 36 features per block.

Fig 3 A typical pedestrian training image (left) and its gradient (right)

2.2 The Off-Line Learning Process

The algorithm learns what defines a pedestrian by examining a series of positive

and negative training images. Because this process is time consuming and does

not need to be repeated, it is performed off-line. During this learning process, a

single block is randomly selected (e.g., see Fig 3, right). The 36D-feature HOG

for this block is then calculated for some subset of the positive and negative

training images. A linear SVM is then trained on the resulting HOGs to develop a

maximally separating hyperplane. We use N-fold cross validation to judge the

performance of the classifiers: blocks that distinguish humans and non-humans

7

well will result in a quality SVM classifier. The SVM’s performance, then,

represents the performance of that particular block.

In general, a single block will not be sufficient to classify positive and negative

images successfully. However, these “weak” block classifiers can be combined to

form stronger classifiers. The AdaBoost algorithm [21] provides a statistically

founded means to choose and weight a set of weak classifiers. The algorithm

repeatedly selects weak classifiers and weights and sums the score from each

classifier into an overall score.

Performance is further improved by recognizing that, as the 64x128 pixel

detection window is densely scanned across an image, many of the detection

windows can be easily classified as not containing a pedestrian. A rejection

cascade is employed to take advantage of this kind of situation. Our cascade uses

several sequential AdaBoost-learned classifiers to discard obviously negative

windows quickly [12]. Thus, the cascade efficiently spends its time classifying

difficult windows. Although we follow the algorithm by Zhu [12], we adjusted

the learning parameters (e.g., target overall false positive rate) to make a different

performance/speed trade-off. We adjusted the number of rejection cascade levels

empirically until a suitable frame rate was obtained. Whereas Zhu had 30

rejection levels, we had only seven and achieved a frame rate of about 8 Hz.

The learning process was distributed onto 10 processors (using the MPICH

multiprocessor software architecture) to decrease training time. Training on 2000

images from the INRIA training dataset [13] took about two days.

2.3 The Detection Process

In order to detect pedestrians at various distances and positions, the 64x128 pixel

detection window is scanned across the image in position and scale. The

monochrome video is 500x312 pixels and, at 16 zoom factors, requires a total of

6,792 detection evaluations per image. With this many evaluations, scaling the

image, scanning the detection window, and calculating the HOG features proves

too slow. To compensate, the algorithm applies the Integral Histogram (IH)

technique as described in [12,18].

In addition to using the IH technique, we also improve performance by scaling the

IH rather than scaling the image. In this process, (1) the IH is calculated for the

original image, (2) the IH is scaled, and (3) the HOG features are calculated.

8

Because the IH is calculated only once in (1), the scaling in (2) is only an

indexing operation, and the IH provides for speedy calculation of the HOG in (3),

the process is appropriate for real-time operation. Thus, by scaling the IH (as

shown in Fig 5) instead of scaling the image directly (Fig 4), the processing time

is reduced by 64%. It is worth noting, however, that the two strategies are not

mathematically equivalent. Scaling the image (e.g., with bilinear interpolation)

and then calculating the IH is not the same as calculating the IH and scaling it.

That said, both algorithms seem to work well in practice and the latter is

significantly faster. This IH scaling technique was also used during the off-line

learning process.

for each scale factor, s

for each block, (x, y, w, h)

m

n

ms

ns

ms

ns
9

IH

Fig 4 Repeatedly scaling the image and calculating the IH proved too slow

for each scale factor, s

for each block, (x/s, y/s, w/s, h/s)

m

n

m

n
9

IH

Fig 5 Instead, we create a single IH and simply adjust the index based on the scale factor

3 Tracking

The task of the tracking algorithm is to filter the incoming detections into a track

which can be used to follow the pedestrian continuously. This tracker is an

important element because the raw pedestrian detections cannot be tracked

unfiltered. The detector will occasionally fail to detect the pedestrian, leaving a

unfiltered system without a goal location for some period of time. Additionally,

the detector will occasionally detect the pedestrian in the wrong position. An

unfiltered system might veer suddenly due to a single spurious detection. Our

9

particle filter implementation mitigates these affects and enforces limits on the

target’s likely motion.

The heading of the pedestrian can be estimated using the camera’s parameters and

the pixel locations of the detections. The distance from the robot’s head is then

estimated directly from the stereo camera’s depth data.

For our experiments, we use a single target tracker which serves to filter clutter

and smooth the response when the pedestrian is missed. In the case of a moving

platform chasing a moving target, the problem is complicated because the tracker

must account for both the motion of the platform and the target.

The filtering is performed using a particle filter where each particle is processed

using a simple Kalman filter. The pedestrian’s state is represented as

 Tzyxzyx  ,,,,,x and we empirically find that this constant velocity model

was sufficient to follow a pedestrian at walking speeds. Each particle includes the

pedestrian’s state and covariance matrix. Each detection in each frame triggers an

update cycle where the input detections are assumed to have a fixed covariance;

the prediction stage propagates the state based on velocity and noise parameters.

Motion of the platform. The state of the platform (e.g., position and velocity)

could be incorporated as part of the system state and modeled by the particle

filter. To avoid the added computational complexity, however, we chose to

simplify the problem and assume that the motion of the platform is known. The

stereo vision head also has an IMU sensor which provides angular rate

information. As the head moves (either from the motion of the neck, chassis, or

slippage), readings from the IMU allow the system to update the pedestrian’s state

relative to the chassis. In practice, we found that assuming the accelerations and

chassis motion had no noise was reasonable. Unlike, for example, mapping

applications where accelerometer noise could accumulate, our application uses

accelerations to servo the head relative to its current position – i.e., absolute

position is not important for our application.

Clutter. Occasionally, the detector will also generate spot noise, or clutter.

These clutter detections are relatively uncorrelated and may appear for only a

single frame. However, they can be at drastically different positions from the

target and may negatively affect the track. As described in [20], we allow

detections to be associated with a “clutter target” with some fixed likelihood

(which can be thought of as a clutter density). For each particle individually, each

10

detection is associated either with the pedestrian target or the clutter target based

on the variance of the pedestrian target and the clutter density. In other words, if a

detection is very far from a particle, and therefore unlikely to be associated with

it, the detection will be considered clutter. This process works well, but

degenerates in the case where the target has a very large variance; the fixed clutter

density threshold causes the majority of detections to be considered clutter and the

tracker must be manually reset. However, this only occurs when the tracker has

been run for an extended period of time (several minutes) without any targets.

The situation might be handled with a dynamic clutter density or a method to reset

the tracker when variances become irrelevantly large.

4 Following

The tracker provides the vector p


which describes the position of the pedestrian

relative to the robot chassis. Our following algorithm, as shown in Fig 6, is a

“greedy” tracker in that it attempts to take the shortest path (from C) to get

several meters behind the pedestrian, facing the pedestrian (to C).

C
C

p


Fig 6 The follower attempts to stay 5 m behind the pedestrian, facing him

The C  frame is provided as a waypoint to an Aware 2.0 waypoint module. The

Aware 2.0 Intelligence Software uses a model of the platform to generate a

number of possible paths (which correspond to a rotate/translate drive command)

the robot might take. Each of these potential paths is scored by the waypoint

module and any other modules (e.g., obstacle avoidance). The command of the

highest scoring path is then executed.

The greedy following used here works well outdoors, but does clip corners.

Another possible following strategy is to servo along the pedestrian’s path. This

strategy has the advantage of traveling the hopefully obstacle free path of the

pedestrian, but can result in unnecessary robot motion and did not seem necessary

for the initial outdoor environments. For robust indoor and outdoor following, it

11

will be necessary to perform either some path planning on a locally generated map

or follow the path of the pedestrian.

5 Performance and Experiments

Fig 7 Video [23] captures of the pedestrian following in operation through a variety of

terrains

As shown in the series of frame captures in Fig 7, the person following is

reasonably robust to changes in the target’s pose. This strength results from the

choice of features (e.g., HOGs are robust to changes in lighting), visual processing

(e.g., processing at different scales and positions), and training data (e.g., the

training data includes a variety of poses). Forward, backward, and side aspects of

the pedestrian are detected reliably. The robot uses about 70% of its 1.2 GHz

Intel Core 2 Duo and runs its servo loop at an average of 8.4 Hz (the remaining

processing power will be used for gesture recognition and obstacle avoidance).

With this configuration, we are able to travel paths similar to those shown in Fig

8. This particular path was ~2 km (1.25 miles) long and was logged using the

robot’s GPS. The path traveled over unimproved surfaces (as shown in Fig 7) and

paved parking lots and sidewalks (as shown in the path in Fig 8).

12

Fig 8 A typical run where the robot followed its target over ~2 km continuously

5.1 Detector Performance

We compared our pedestrian detector to those of Dalal [13] and Zhu [12] using

the DET curve as described in [13]. The DET curve describes how changing the

system’s detection threshold affects the miss rate and False Positives Per Window

(FPPW). The published results of Dalal and Zhu, tested on the INRIA pedestrian

database, are shown in Fig 9. Dalal achieved the best overall results, but was not

suitable for real-time operation. Zhu improved the real-time capabilities of the

system, with slight penalties in performance. We use the same methods as Zhu,

but make a different performance/speed tradeoff. Whereas Zhu’s rejection

cascade had 30 levels, we limit ours to only seven levels. Our results are shown

in Fig 9 on the same INRIA database. As expected, we achieve lesser detection

performance, but benefit from an estimated 36% speed up over Zhu.

13

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

FPPW

M
is

s
ra

te

Dalal (INRIA)
Zhu (INRIA)

Our Classifier (INRIA)

Our Classifier (typical data)

Operating Point
Operating Point (rain)

Fig 9 Compared to those of Dalal [13] and Zhu [12], we have a higher miss rate and higher

false positive per window score. However, our detector runs an estimated 36% faster

During operation, however, we noticed that the performance was better than that

predicted on the INRIA database. Indeed, the INRIA database is more difficult

than our typical data. We re-tested our system against our dataset and again

produced the DET plot. Although this curve cannot be meaningfully compared to

the other curves, it does suggest what level of performance is necessary to do

effective person following: we successfully operate at the point circled, at 0.1%

FPPW and 15% miss rate. This operating point will be important as we continue

our work, allowing us to precisely target our design and retrain future classifiers

knowing a minimum required level of performance.

5.2 Following Performance

In order to characterize the ability of the entire system to follow a pedestrian, we

compare the estimated track position of the pedestrian to a ground truth position.

To do so, we had nine test subjects walk a combined total of about 8.7 km (5.4

miles) and recorded their position relative to the robot as estimated by the tracker.

Test subjects were asked to walk at a normal pace (4-5 km/h) and to try to make

about the same number of left and right turns. We also logged data from the on-

board LIDAR and hand-annotated the data for ground truth. To our knowledge,

no previous person following system has proved its success over these distances

or with even this many users.

14

As described in [19], we calculated several statistics comparing the estimated and

true tracks. In addition to the mean, median, and standard deviation, we calculate

results for the spatial offset of the tracks (the 2D shift that best aligns the tracks),

the temporal offset of the tracks (the shift in time that best aligns the tracks), and

the combined temporal and spatial offset.

Table 1 The error (in meters) between the estimated and ground truth (hand-annotated

from LIDAR) positions for all test subjects

Mean
Error

Median
Error

Standard
Deviation
of Error

Minimum
Error

Maximum
Error

Uncorrected 0.2837 0.2248 0.29019 0.001835 3.0691

Spatially Corrected 0.24239 0.18314 0.28382 0.001095 3.0915

Temporally
Corrected

0.27811 0.2206 0.2994 0.001919 5.7675

Spatio-temporally
Corrected

0.23513 0.17688 0.29361 0.001416 5.7499

Table 1 shows the results averaged from all the test subjects. Without any

corrections, the system tracked the pedestrian within an average error of 0.2837

m. The average spatial bias was 0.134 m and 0.095 m in the x and y directions,

respectively. The average temporal offset was 74 ms, which is less than the

pedestrian tracker’s frame period (~120 ms).

Since the average temporal offset was less than a cycle of the detection algorithm,

it is an acceptable error. To better understand the overall track error, Fig 10

shows a sample plot from one of the test subjects comparing the pedestrian’s

actual and estimated distance from the robot. The dotted lines show the error

bounds provided by Tyzx for our 6 cm-baseline G2 stereo system. As can be seen

from the best fit line, the system’s estimates are slightly biased (13.8 cm bias at 5

m actual distance), but still fall well within the sensor’s accuracy limits. Some

errors fall outside the boundaries, but these are caused by cases when the

pedestrian exited the camera’s field of view and the tracker simply propagated the

position estimate based on constant velocity.

15

Fig 10 The accuracy of our system while tracking a pedestrian is within the limits of our

stereo vision system

Finally, Fig 11 is a 2D histogram of a sample pedestrian’s position relative to the

robot. The robot is located at (0, 0), oriented to the right; the intensity of the plot

shows areas where the pedestrian spent most of his time. As expected, the system

was able to place the robot about 5 m behind the pedestrian most frequently. The

distribution of the pedestrian’s position is reflective both of the pedestrian’s

dynamics (how fast he walked and turned) and the robot’s dynamics (how quickly

the robot could respond to changes in the pedestrian’s path).

meters

m
et

er
s

-1 0 1 2 3 4 5 6 7 8 9
-3

-2

-1

0

1

2

3

Fig 11 A 2D histogram of the pedestrian’s position relative to the robot shows that the system

was able to position the robot in the anticipated position, 5 m behind the target, most

frequently. The robot is depicted as a triangle at (0, 0), oriented to the right

16

5.3 Performance in Rain

To characterize our system further, we also performed testing outdoors in a brief

rainstorm. During the storm, the NOAA report [22] for the nearest airport

measured the average hourly rainfall at 2.5 mm/hr (0.1 in/hr) and described it as

“light rain.”

Fig 12 The system successfully followed the pedestrian even during a brief rainstorm

The system was able to operate successfully despite a considerable build up of

rain on the camera’s protective window; the detector was still able to locate the

pedestrian in images as blurry as Fig 13. Depth data from the stereo cameras

degraded quickly since drops in front of either camera resulted in large gaps in the

depth data. Systems which rely primarily on depth data for detection (e.g., rely

only stereo depth data) would fail quickly. Our system was robust to this loss of

data since only an average of the entire pedestrian’s distance was used. The mean

track error in rain was comparable to that in dry conditions, and the FPPW was

0.08% with a 17.3% miss rate, as shown in Fig 9.

Fig 13 The detector continued to detect pedestrians even with rain drops partially obscuring

the view

17

6 Conclusions and Future Work

We have demonstrated pedestrian following on a mobile robot using HOG

features. The system uses monocular video for detections, stereo depth data for

distance, and runs at about 8 Hz on board the robot using 70% of the 1.2 GHz

Intel Core 2 Duo. The system is able to follow people at typical walking speeds

over flat and moderate terrain.

Unlike some previous work, our follower does not need to learn or be calibrated

to follow a new pedestrian. The system uses only vision and does not use depth

data for detection. Cameras represent an inexpensive path to deployment and

provide rich features not available with range sensors. Our evaluations verify the

system’s performance and suggest a level of detector performance necessary for

person following in our system. Finally, we have successfully demonstrated

performance over a significant distance with a variety of targets.

Our next step will be to implement a multiple target tracker. At times, the

pedestrian detector will produce persistent detections on other targets (other

pedestrians) or false targets (non-pedestrians). For example, if two pedestrians

are in the scene, the detector will probably correctly locate both people. On the

other hand, occasionally a tree or bush will generate a relatively stable false target.

Currently, the tracker must resolve all the detections into a single target; the result

is that multiple targets get averaged together. These kinds of errors can be

mitigated with a multiple target tracker, such as those used in [15-17].

Acknowledgements. This work was partially supported by DARPA Contract

W31P4Q-08-C-0327 and ONR Contract N00014-08-C-0626.

References

1. Satake J, Miura J (2009) Robust Stereo-Based Person Detection and Tracking for a Person

Following Robot. In: Proceedings of the IEEE ICRA 2009 Workshop on People Detection and

Tracking

2. Loper M, Koenig N, Chernova S, Jenkins C, Jones C (2009) Mobile human-robot teaming

with environmental tolerance. In: Proceedings of the ACM/IEEE International Conference on

Human-Robot Interaction, pp 157-164

3. Kwon H, Yoon Y, Park J, Kak A (2005) Person Tracking with a Mobile Robot using Two

Uncalibrated Independently Moving Cameras. In: Proceedings of IEEE International

Conference on Robotics and Automation

18

4. Kleinehagenbrock M, Lang S, Fritsch J, Lomker F, Fink G, Sagerer G (2002) Person Tracking

with a Mobile Robot based on Multi-Modal Anchoring. In: Proceedings of IEEE International

Workshop on Robot and Human Interactive Communacation, pp 423-429

5. Carballo A, Ohya A, Yuta S (2009) Multiple people detection from a mobile robot using

double layered laser range finders. In: Lecture Notes in Electrical Engineering 35, DOI

10.1007/978-3-540-89859-7 22, Springer-Verlag Berlin Heidelberg

6. Yoshimi T, Nishiyama M, Sonoura T, Nakamoto H, Tokura S et al (2006) Development of a

Person Following Robot with Vision Based Target Detection. In: Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems

7. Shaker S, Saade J, Asmar D (2008) Fuzzy Inference-Based Person-Following Robot.

International Journal of Systems Applications, Engineering and Development, Issue 1,

Volume 2

8. Kirby R, Forlizzi J, Simmons R (2007) Natural Person-Following Behavior for Social Robots.

In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp

17-24

9. Topp E, Christensen H (2005) Tracking for following and passing persons. In: Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 70-76

10. Schlegel C, Illmann J, Jaberg K, Schuster M, Worz R (1998) Vision based person tracking

with a mobile robot. In: Proceedings of the Ninth British Machine Vision Conference, pp 418-

427

11. Tarokh M, Kuo J (2006) Vision based Person tracking and following in unstructured

environments. In: Proceedings of IEEE 13th Annual Conf. on Mechatronics and Machine

Vision in Practice: Vol. 1., pp 031.1-031.6

12. Zhu Q, Yeh M, Cheng K, Avidan S (2006) Fast Human Detection Using a Cascade of

Histograms of Oriented Gradients. In: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Vol 2, No 2, pp 1491-1498

13. Dalal N (2006) Finding People in Images and Videos. Dissertation, Institut National

Polytechnique de Grenoble

14. Dalal N, Triggs B (2005) Histograms of Oriented Gradients for Human Detection. In:

Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp 886-893

15. Ess A, Leibe B, Schindler K, van Gool L (2008) A Mobile Vision System for Robust Multi-

Person Tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition

16. Lau B, Arras K, Burgard W (2009) Multi-model Hypothesis Group Tracking and Group Size

Estimation. In: Proceedings of the IEEE ICRA 2009 Workshop on People Detection and

Tracking

17. Sullivan J, Nillius P, Carlsson S (2009) Multi-target Tracking on a Large Scale: Experiences

from Football Player Tracking. In: Proceedings of the IEEE ICRA 2009 Workshop on People

Detection and Tracking

19

18. Viola P, Jones M (2001) Rapid Object Detection using a Boosted Cascade of Simple Features.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Vol 1, pp

511

19. Needham C, Boyle R (2003) Performance Evaluation Metrics and Statistics for Positional

Tracker Evaluation. In: Proceedings of International Conference on Computer Vision

Systems, pp 278-289

20. Särkkä S, Vehtari A, Lampinen J (2007) Rao-Blackwellized Particle Filter for Multiple Target

Tracking. In: Information Fusion Journal, Vol 8, Issue 1, pp 2-15

21. Schapire R (2001) The boosting approach to machine learning: An overview. In: MSRI

Workshop on Nonlinear Estimation and Classification

22. National Oceanic and Atmospheric Administration (2009) Current weather conditions:

Bedford Hanscom Field, MA, United States.

http://weather.noaa.gov/weather/current/KBED.html. Accessed 21 July 2009

23. iRobot Research Videos. http://www.irobot.com/sp.cfm?pageid=189. “iRobot Tactical Teams

/ Natural HRI”

20

Biographies

Jonathan Brookshire obtained his M.S. in Robotics from Carnegie Mellon

University (CMU) in 2004 and his Electrical Engineering B.S. from the

University of Virginia in 2002. He is currently pursuing his PhD at MIT and is

also a researcher at iRobot Corporation, investigating methods of human robot

interaction on small, mobile platforms. At iRobot, he developed a complete,

integrated system that is now a commercial product: the Mapping Kit provides the

operator with fused information that provides (1) real-time 2-D mapping and (2)

safeguarded teleoperation capabilities. At CMU, Mr. Brookshire studied sliding

autonomy with teams of multiple, heterogeneous robots performing a coordinated

assembly task. He also previously worked at MIT Lincoln Laboratory focused on

RADAR real-time image processing and high speed data acquisition.

