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Abstract.  In order for robots to effectively interact with people in close proximity, the systems 

must first be able to detect, track, and follow people.  This paper describes results from the 

development of a mobile robot which will follow a single, unmarked pedestrian using vision.  This 

work demonstrates an improvement over existing pedestrian following applications because (1) it 

uses sufficiently strong classifiers such that it does not need to adapt to any particular pedestrian, 

(2) uses only vision and does not rely on any laser range devices, (3) provides a single point 

benchmark for the level of performance required from a detector to achieve pedestrian following, 

and (4) its performance is characterized over several kilometers in both rainy and dry weather 

conditions.  The system leverages Histograms of Oriented Gradients (HOG) features for pedestrian 

detection at over 8 Hz using video from a monochrome camera.  The pedestrian’s heading is 

combined with distance from stereo depth data to yield a 3D estimate.  A particle filter with some 

clutter rejection provides a continuous track, and a waypoint follow behavior servos the iRobot 

PackBot robot chassis to a desired location behind the pedestrian.  The final system is able to 

detect, track, and follow a pedestrian over several kilometers in outdoor environments, 

demonstrating a level of performance not previously shown on a small unmanned ground vehicle. 

Keywords: person following, pedestrian tracking, histogram of oriented 

gradients, detection error tradeoff, weather 
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1 Introduction 

One of our long term goals is to design systems that enable humans and robots to 

work cooperatively, side-by-side in real world environments.  Here, we are 

interested in situations where the robot and human are adjacent in the environment 

and the operation of the robot is not the human’s primary task.  Enabling natural 

and efficient human interaction with the robot in this kind of situation is an 

ambitious goal, requiring advances in the robot’s ability to interpret human 

commands and react to its environment with context and high level reasoning.  

We concentrate on the first part of the problem: keeping the robot physically 

adjacent to the human(s).  This task involves detecting a pedestrian, tracking 

his/her path, and navigating the robot to a desired location with respect to the 

pedestrian.  A video of our results is available at [23].  A popular example of a 

pedestrian following application is the robotic “mule” that hauls gear and supplies 

for a group of dismounted soldiers.  The same technology could also be used as a 

building block for everything from elder care to smart golf carts. 

Computational 
payload 

Stereo vision 
cameras and 
IMU “head” 

iRobot PackBot 
robot chassis 

3-DOF “neck” 

 

Fig 1 The robot is an iRobot PackBot chassis (tracked vehicle) augmented with stereo vision 

and additional computing power 

Our work differs from previous efforts in several ways.  First, our system does not 

require tuning and does not attempt to learn any particular target.  Although on-

line learning can have advantages (e.g., by selecting the target’s resilient features), 

the pedestrian’s constantly changing pose, lighting conditions, background, etc. 

make this a challenging learning problem.  Our system is able to follow a 

pedestrian target without any training period or prior knowledge of the specific 

target.  Second, many approaches rely only on depth data for detection.  The 

advantages of this approach are reduced data rates and simplified, real-time 

detection schemes.  Vision, however, offers a rich set of features which can allow 
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pedestrians to be identified where depth data is insufficient.  Additionally, 

building an approach that relies only on vision allows for the later possibility of 

fusing, for example, LIDAR data with visual detections to improve performance.  

This is of particular interest when one sensor may fail (e.g., dusty or rainy 

conditions).  Third, building a complete person following system has allowed us 

to establish a single reference point for required detector performance (e.g., false 

positive and miss rate).  Although this result will not uniquely apply to all 

systems, we have found it critical in our practical application, allowing us to 

design person detection schemes with a performance goal.  Fourth, although many 

systems have demonstrated person following, few have quantified the 

performance over a variety of operators and over several kilometers of distance in 

realistic, all-weather scenarios. 

As shown in Fig 2, the pedestrian detection is performed using the video stream 

from a single camera of a stereo pair (the stereo depth data is used only to 

estimate the pedestrian’s distance).  The demonstration was developed on an off-

the-shelf iRobot PackBot.  The system was then upgraded with our standard, 

modular computational payload (see Fig 1). It provides an Intel 1.2 GHz Core 2 

Duo-based computer, GPS (not used), LIDAR (used only for ground truth, see 

Following Performance), and IMU.  In addition, a Tyzx G2 stereo camera pair 

(“head”) is mounted at the top of a 3-DOF neck.  During following, only the pan 

(left-right camera movement) axis of the neck is moved in an attempt to keep the 

target in the center of the field of view.  By decoupling the orientation of the head 

and the chassis, we are able to maintain track while placing fewer requirements on 

the motion of the chassis.  The robot has a top speed of about 2.2 m/s (5 MPH) 

and the software was written in the iRobot Aware 2.0 Intelligence Software. 

We perform several experiments to validate our system’s performance in both dry 

and rainy weather conditions.  We evaluate the Detection Error Tradeoff (DET) 

curve of the pedestrian detector on widely used datasets for comparison to other 

algorithms.  We also characterize the complete performance of our system 

(detector, tracker, and follower) against a ground truth derived from human-

annotated LIDAR, to verify that the end-to-end person following system is 

operating correctly. 
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Fig 2 System architecture 

1.1 Related work 

Because person following must operate in real-time in order to adapt to changes in 

the target’s trajectory, many existing person following solutions have found 

various ways to simplify the perception problem.  Dense depth or scanned range 

data have been used to identify and follow people effectively.  For example, in our 

previous work [2], we used a Support Vector Machine (SVM) trained on depth 

data from an infrared ranging SwissRanger.  Satake and Minura [1] used the depth 

information from stereo cameras and templates to identify people.  The system 

developed by Kleinehagenbrock [4] fused information from a LIDAR with 

estimates based on skin-color to follow people.  Other systems [7-9] relied 

primarily on LIDAR data to perform following. Our system differs from these in 

that we use depth information only to estimate the pedestrian’s distance and not 

for detection.  This is an important distinction because the depth data may not be 

as feature rich or available in all weather conditions (see Performance in Rain).  

Note that we focus only on pedestrian (upright, walking people) detection and not 

general person (various postures, etc.) detection. 

Other methods have been developed that rely primarily on vision for detection, 

but attempt to learn features of a particular person on-line.  In [3], Kwon 

developed a system which uses two cameras and learns a color histogram 

describing the pedestrian to follow.  The robot developed by Yoshimi [6] used 

stereo vision and adjusted the features being tracked based on several conditions.  
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Similar approaches, e.g., [10, 11], use color space or contour detection to find 

people.  Our system differs from these systems in that we use a different set of 

features (see below) and do not adjust our tracker to any particular pedestrian in 

the scene. This allows our system to be used with any operator without prior, user-

specific training or tuning. 

In addition to these systems, which provide complete person following, our work 

is also related to many detection and tracking research efforts.  Our detector is 

based on the Histogram of Oriented Gradient (HOG) features developed by Dalal 

[13, 14] and uses the same machine learning applied by Zhu [12] (see Detection).  

HOG features have been shown to be computationally efficient and robust to 

lighting and color changes. 

The sections that follow describe each aspect of the system in more detail.  The 

Detection section details the HOG detector and its implementation.  The Tracking 

section discusses the particle filter implementation used to filter the incoming 

detections.  Finally, the Following section describes the navigation algorithm used 

on the robot. 

2 Detection 

Our algorithm uses the Histogram of Oriented Gradient (HOG) features originally 

developed by Dalal [13, 14].  Zhu [12] applied a series of machine learning 

techniques and adaptations to [13], which allowed the system to run in real-time.  

Our detection algorithm is similar to that of [12], but we use slightly different 

learning parameters (see The Off-Line Learning Process for details) and make a 

different trade-off between speed and performance.  Due to page limitations, we 

provide only a brief discussion of the detection strategy here; we refer the reader 

to [12-14] for complete details. 

The algorithm works by learning a set of linear Support Vector Machines (SVMs) 

trained on positive (pedestrian) and negative (non-pedestrian) training images.  

This off-line learning process generates a set of SVMs, weights, and image 

regions that can then be used on-line to classify an unknown image as either 

positive or negative. 
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2.1 The Features 

As with many computer vision applications, part of the challenge is to find a 

descriptive set of features.  If the feature space is rich enough – that is, it provides 

sufficient information to identify targets – these features can be combined with 

machine learning algorithms to classify targets and non-targets.  The work done in 

[14] demonstrated success using HOG features for pedestrian detection.  A single 

HOG is a way to encode local gradients.  In this process, the gradient is first 

calculated for each pixel.  Next, the training image (see Fig 3) is divided into a 

number of sub-windows, often referred to as “blocks”.  The blocks span size from 

8 to 64 pixels, have various length-to-width ratios, and densely cover the image 

(i.e., overlap).  Each block is divided into quadrants and the HOG of each 

quadrant is calculated.  A HOG is a histogram with nine evenly spaced bins for 

orientation into which the gradients vote (nine bins was suggested in [13] as being 

the most effective for classifying pedestrians).  Thus, each quadrant produces nine 

features for a total of 36 features per block. 

 
Fig 3 A typical pedestrian training image (left) and its gradient (right) 

2.2 The Off-Line Learning Process 

The algorithm learns what defines a pedestrian by examining a series of positive 

and negative training images.  Because this process is time consuming and does 

not need to be repeated, it is performed off-line.  During this learning process, a 

single block is randomly selected (e.g., see Fig 3, right).  The 36D-feature HOG 

for this block is then calculated for some subset of the positive and negative 

training images.  A linear SVM is then trained on the resulting HOGs to develop a 

maximally separating hyperplane.  We use N-fold cross validation to judge the 

performance of the classifiers: blocks that distinguish humans and non-humans 
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well will result in a quality SVM classifier.  The SVM’s performance, then, 

represents the performance of that particular block. 

In general, a single block will not be sufficient to classify positive and negative 

images successfully.  However, these “weak” block classifiers can be combined to 

form stronger classifiers.  The AdaBoost algorithm [21] provides a statistically 

founded means to choose and weight a set of weak classifiers.  The algorithm 

repeatedly selects weak classifiers and weights and sums the score from each 

classifier into an overall score. 

Performance is further improved by recognizing that, as the 64x128 pixel 

detection window is densely scanned across an image, many of the detection 

windows can be easily classified as not containing a pedestrian.  A rejection 

cascade is employed to take advantage of this kind of situation.  Our cascade uses 

several sequential AdaBoost-learned classifiers to discard obviously negative 

windows quickly [12].  Thus, the cascade efficiently spends its time classifying 

difficult windows.  Although we follow the algorithm by Zhu [12], we adjusted 

the learning parameters (e.g., target overall false positive rate) to make a different 

performance/speed trade-off.  We adjusted the number of rejection cascade levels 

empirically until a suitable frame rate was obtained.  Whereas Zhu had 30 

rejection levels, we had only seven and achieved a frame rate of about 8 Hz. 

The learning process was distributed onto 10 processors (using the MPICH 

multiprocessor software architecture) to decrease training time.  Training on 2000 

images from the INRIA training dataset [13] took about two days.   

2.3 The Detection Process 

In order to detect pedestrians at various distances and positions, the 64x128 pixel 

detection window is scanned across the image in position and scale.  The 

monochrome video is 500x312 pixels and, at 16 zoom factors, requires a total of 

6,792 detection evaluations per image.  With this many evaluations, scaling the 

image, scanning the detection window, and calculating the HOG features proves 

too slow.  To compensate, the algorithm applies the Integral Histogram (IH) 

technique as described in [12,18]. 

In addition to using the IH technique, we also improve performance by scaling the 

IH rather than scaling the image.  In this process, (1) the IH is calculated for the 

original image, (2) the IH is scaled, and (3) the HOG features are calculated.  
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Because the IH is calculated only once in (1), the scaling in (2) is only an 

indexing operation, and the IH provides for speedy calculation of the HOG in (3), 

the process is appropriate for real-time operation.  Thus, by scaling the IH (as 

shown in Fig 5) instead of scaling the image directly (Fig 4), the processing time 

is reduced by 64%.  It is worth noting, however, that the two strategies are not 

mathematically equivalent.  Scaling the image (e.g., with bilinear interpolation) 

and then calculating the IH is not the same as calculating the IH and scaling it.  

That said, both algorithms seem to work well in practice and the latter is 

significantly faster.  This IH scaling technique was also used during the off-line 

learning process. 
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Fig 4 Repeatedly scaling the image and calculating the IH proved too slow 
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Fig 5 Instead, we create a single IH and simply adjust the index based on the scale factor 

3 Tracking 

The task of the tracking algorithm is to filter the incoming detections into a track 

which can be used to follow the pedestrian continuously.  This tracker is an 

important element because the raw pedestrian detections cannot be tracked 

unfiltered.  The detector will occasionally fail to detect the pedestrian, leaving a 

unfiltered system without a goal location for some period of time.  Additionally, 

the detector will occasionally detect the pedestrian in the wrong position.  An 

unfiltered system might veer suddenly due to a single spurious detection.  Our 
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particle filter implementation mitigates these affects and enforces limits on the 

target’s likely motion. 

The heading of the pedestrian can be estimated using the camera’s parameters and 

the pixel locations of the detections.  The distance from the robot’s head is then 

estimated directly from the stereo camera’s depth data. 

For our experiments, we use a single target tracker which serves to filter clutter 

and smooth the response when the pedestrian is missed.  In the case of a moving 

platform chasing a moving target, the problem is complicated because the tracker 

must account for both the motion of the platform and the target. 

The filtering is performed using a particle filter where each particle is processed 

using a simple Kalman filter.  The pedestrian’s state is represented as 

 Tzyxzyx  ,,,,,x  and we empirically find that this constant velocity model 

was sufficient to follow a pedestrian at walking speeds.  Each particle includes the 

pedestrian’s state and covariance matrix.  Each detection in each frame triggers an 

update cycle where the input detections are assumed to have a fixed covariance; 

the prediction stage propagates the state based on velocity and noise parameters. 

Motion of the platform.  The state of the platform (e.g., position and velocity) 

could be incorporated as part of the system state and modeled by the particle 

filter.  To avoid the added computational complexity, however, we chose to 

simplify the problem and assume that the motion of the platform is known.  The 

stereo vision head also has an IMU sensor which provides angular rate 

information.  As the head moves (either from the motion of the neck, chassis, or 

slippage), readings from the IMU allow the system to update the pedestrian’s state 

relative to the chassis.  In practice, we found that assuming the accelerations and 

chassis motion had no noise was reasonable.  Unlike, for example, mapping 

applications where accelerometer noise could accumulate, our application uses 

accelerations to servo the head relative to its current position – i.e., absolute 

position is not important for our application. 

Clutter.  Occasionally, the detector will also generate spot noise, or clutter.  

These clutter detections are relatively uncorrelated and may appear for only a 

single frame.  However, they can be at drastically different positions from the 

target and may negatively affect the track.  As described in [20], we allow 

detections to be associated with a “clutter target” with some fixed likelihood 

(which can be thought of as a clutter density).  For each particle individually, each 
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detection is associated either with the pedestrian target or the clutter target based 

on the variance of the pedestrian target and the clutter density.  In other words, if a 

detection is very far from a particle, and therefore unlikely to be associated with 

it, the detection will be considered clutter.  This process works well, but 

degenerates in the case where the target has a very large variance; the fixed clutter 

density threshold causes the majority of detections to be considered clutter and the 

tracker must be manually reset.  However, this only occurs when the tracker has 

been run for an extended period of time (several minutes) without any targets.  

The situation might be handled with a dynamic clutter density or a method to reset 

the tracker when variances become irrelevantly large. 

4 Following 

The tracker provides the vector p


which describes the position of the pedestrian 

relative to the robot chassis.  Our following algorithm, as shown in Fig 6, is a 

“greedy” tracker in that it attempts to take the shortest path (from C ) to get 

several meters behind the pedestrian, facing the pedestrian (to C ).   

C
C

p


 
Fig 6 The follower attempts to stay 5 m behind the pedestrian, facing him 

The C   frame is provided as a waypoint to an Aware 2.0 waypoint module.  The 

Aware 2.0 Intelligence Software uses a model of the platform to generate a 

number of possible paths (which correspond to a rotate/translate drive command) 

the robot might take.  Each of these potential paths is scored by the waypoint 

module and any other modules (e.g., obstacle avoidance).  The command of the 

highest scoring path is then executed. 

The greedy following used here works well outdoors, but does clip corners.  

Another possible following strategy is to servo along the pedestrian’s path.  This 

strategy has the advantage of traveling the hopefully obstacle free path of the 

pedestrian, but can result in unnecessary robot motion and did not seem necessary 

for the initial outdoor environments.  For robust indoor and outdoor following, it 
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will be necessary to perform either some path planning on a locally generated map 

or follow the path of the pedestrian. 

5 Performance and Experiments 

Fig 7 Video [23] captures of the pedestrian following in operation through a variety of 

terrains 

As shown in the series of frame captures in Fig 7, the person following is 

reasonably robust to changes in the target’s pose.  This strength results from the 

choice of features (e.g., HOGs are robust to changes in lighting), visual processing 

(e.g., processing at different scales and positions), and training data (e.g., the 

training data includes a variety of poses).  Forward, backward, and side aspects of 

the pedestrian are detected reliably.  The robot uses about 70% of its 1.2 GHz 

Intel Core 2 Duo and runs its servo loop at an average of 8.4 Hz (the remaining 

processing power will be used for gesture recognition and obstacle avoidance).   

With this configuration, we are able to travel paths similar to those shown in Fig 

8.  This particular path was ~2 km (1.25 miles) long and was logged using the 

robot’s GPS.  The path traveled over unimproved surfaces (as shown in Fig 7) and 

paved parking lots and sidewalks (as shown in the path in Fig 8). 
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Fig 8 A typical run where the robot followed its target over ~2 km continuously 

5.1 Detector Performance 

We compared our pedestrian detector to those of Dalal [13] and Zhu [12] using 

the DET curve as described in [13]. The DET curve describes how changing the 

system’s detection threshold affects the miss rate and False Positives Per Window 

(FPPW).  The published results of Dalal and Zhu, tested on the INRIA pedestrian 

database, are shown in Fig 9.  Dalal achieved the best overall results, but was not 

suitable for real-time operation.  Zhu improved the real-time capabilities of the 

system, with slight penalties in performance.  We use the same methods as Zhu, 

but make a different performance/speed tradeoff.  Whereas Zhu’s rejection 

cascade had 30 levels, we limit ours to only seven levels.  Our results are shown 

in Fig 9 on the same INRIA database.  As expected, we achieve lesser detection 

performance, but benefit from an estimated 36% speed up over Zhu.   
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Fig 9 Compared to those of Dalal [13] and Zhu [12], we have a higher miss rate and higher 

false positive per window score.  However, our detector runs an estimated 36% faster 

During operation, however, we noticed that the performance was better than that 

predicted on the INRIA database.  Indeed, the INRIA database is more difficult 

than our typical data.  We re-tested our system against our dataset and again 

produced the DET plot.  Although this curve cannot be meaningfully compared to 

the other curves, it does suggest what level of performance is necessary to do 

effective person following: we successfully operate at the point circled, at 0.1% 

FPPW and 15% miss rate.  This operating point will be important as we continue 

our work, allowing us to precisely target our design and retrain future classifiers 

knowing a minimum required level of performance. 

5.2 Following Performance 

In order to characterize the ability of the entire system to follow a pedestrian, we 

compare the estimated track position of the pedestrian to a ground truth position.  

To do so, we had nine test subjects walk a combined total of about 8.7 km (5.4 

miles) and recorded their position relative to the robot as estimated by the tracker.  

Test subjects were asked to walk at a normal pace (4-5 km/h) and to try to make 

about the same number of left and right turns.  We also logged data from the on-

board LIDAR and hand-annotated the data for ground truth.  To our knowledge, 

no previous person following system has proved its success over these distances 

or with even this many users. 
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As described in [19], we calculated several statistics comparing the estimated and 

true tracks.  In addition to the mean, median, and standard deviation, we calculate 

results for the spatial offset of the tracks (the 2D shift that best aligns the tracks), 

the temporal offset of the tracks (the shift in time that best aligns the tracks), and 

the combined temporal and spatial offset. 

Table 1  The error (in meters) between the estimated and ground truth (hand-annotated 

from LIDAR) positions for all test subjects 

 
Mean 
Error 

Median 
Error 

Standard 
Deviation 
of Error 

Minimum 
Error 

Maximum 
Error 

Uncorrected 0.2837 0.2248 0.29019 0.001835 3.0691 

Spatially Corrected 0.24239 0.18314 0.28382 0.001095 3.0915 

Temporally 
Corrected 

0.27811 0.2206 0.2994 0.001919 5.7675 

Spatio-temporally 
Corrected 

0.23513 0.17688 0.29361 0.001416 5.7499 

 

Table 1 shows the results averaged from all the test subjects.  Without any 

corrections, the system tracked the pedestrian within an average error of 0.2837 

m.  The average spatial bias was 0.134 m and 0.095 m in the x and y directions, 

respectively.  The average temporal offset was 74 ms, which is less than the 

pedestrian tracker’s frame period (~120 ms).   

Since the average temporal offset was less than a cycle of the detection algorithm, 

it is an acceptable error.  To better understand the overall track error, Fig 10 

shows a sample plot from one of the test subjects comparing the pedestrian’s 

actual and estimated distance from the robot.  The dotted lines show the error 

bounds provided by Tyzx for our 6 cm-baseline G2 stereo system.  As can be seen 

from the best fit line, the system’s estimates are slightly biased (13.8 cm bias at 5 

m actual distance), but still fall well within the sensor’s accuracy limits.  Some 

errors fall outside the boundaries, but these are caused by cases when the 

pedestrian exited the camera’s field of view and the tracker simply propagated the 

position estimate based on constant velocity. 
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Fig 10  The accuracy of our system while tracking a pedestrian is within the limits of our 

stereo vision system 

Finally, Fig 11 is a 2D histogram of a sample pedestrian’s position relative to the 

robot.  The robot is located at (0, 0), oriented to the right; the intensity of the plot 

shows areas where the pedestrian spent most of his time.  As expected, the system 

was able to place the robot about 5 m behind the pedestrian most frequently.  The 

distribution of the pedestrian’s position is reflective both of the pedestrian’s 

dynamics (how fast he walked and turned) and the robot’s dynamics (how quickly 

the robot could respond to changes in the pedestrian’s path). 
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Fig 11 A 2D histogram of the pedestrian’s position relative to the robot shows that the system 

was able to position the robot in the anticipated position, 5 m behind the target, most 

frequently.  The robot is depicted as a triangle at (0, 0), oriented to the right 
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5.3 Performance in Rain 

To characterize our system further, we also performed testing outdoors in a brief 

rainstorm.  During the storm, the NOAA report [22] for the nearest airport 

measured the average hourly rainfall at 2.5 mm/hr (0.1 in/hr) and described it as 

“light rain.”   

 

Fig 12 The system successfully followed the pedestrian even during a brief rainstorm 

The system was able to operate successfully despite a considerable build up of 

rain on the camera’s protective window; the detector was still able to locate the 

pedestrian in images as blurry as Fig 13.  Depth data from the stereo cameras 

degraded quickly since drops in front of either camera resulted in large gaps in the 

depth data.  Systems which rely primarily on depth data for detection (e.g., rely 

only stereo depth data) would fail quickly.  Our system was robust to this loss of 

data since only an average of the entire pedestrian’s distance was used.  The mean 

track error in rain was comparable to that in dry conditions, and the FPPW was 

0.08% with a 17.3% miss rate, as shown in Fig 9. 

 

Fig 13 The detector continued to detect pedestrians even with rain drops partially obscuring 

the view 
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6 Conclusions and Future Work 

We have demonstrated pedestrian following on a mobile robot using HOG 

features.  The system uses monocular video for detections, stereo depth data for 

distance, and runs at about 8 Hz on board the robot using 70% of the 1.2 GHz 

Intel Core 2 Duo.  The system is able to follow people at typical walking speeds 

over flat and moderate terrain. 

Unlike some previous work, our follower does not need to learn or be calibrated 

to follow a new pedestrian.  The system uses only vision and does not use depth 

data for detection.  Cameras represent an inexpensive path to deployment and 

provide rich features not available with range sensors.  Our evaluations verify the 

system’s performance and suggest a level of detector performance necessary for 

person following in our system.  Finally, we have successfully demonstrated 

performance over a significant distance with a variety of targets. 

Our next step will be to implement a multiple target tracker.  At times, the 

pedestrian detector will produce persistent detections on other targets (other 

pedestrians) or false targets (non-pedestrians).  For example, if two pedestrians 

are in the scene, the detector will probably correctly locate both people.  On the 

other hand, occasionally a tree or bush will generate a relatively stable false target.  

Currently, the tracker must resolve all the detections into a single target; the result 

is that multiple targets get averaged together.  These kinds of errors can be 

mitigated with a multiple target tracker, such as those used in [15-17].   

Acknowledgements. This work was partially supported by DARPA Contract 

W31P4Q-08-C-0327 and ONR Contract N00014-08-C-0626. 
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