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Fig. 1: Mixed-Reality system with varied realism of robotic systems and human behavior. Virtual components are illustrated in blue (best
viewed in color): (a) Fully simulated, (b-e) human characters are controlled by real humans (via (b) console-based Virtual Reality (VR),
(c) immersive VR, (d) Augmented Reality (AR) interfaces, and (e) VR/AR with real robots ), and (f) fully real.

Abstract— Advances in reinforcement learning are being
brought to physical robotic systems. Enabling them to deal with
humans in the real world is critical, yet how to do so safely is
an open question. This paper presents a Mixed-Reality (MR)
system toward human-centered development of robotic systems
emphasizing benefits as a Reinforcement Learning (RL) data
collection and testbed tool. It allows real humans to interact
with various levels of simulation to maintain both realism and
safety. Collected data can be used for improvement/evaluation
of algorithms and simulation models.

I. INTRODUCTION

Interests are increasing in bringing advances in machine
learning to physical robotic systems such as autonomous
driving cars [1] and manipulators [2]. Although we have wit-
nessed successful algorithms to control and operate robots,
an issue still remains when it comes to their interaction with
humans [3]. Since the ultimate use of physical robots would
happen in the real world, enabling them to learn to deal
with humans is essential. However, developing and testing
robotic systems operating alongside humans in a safe, yet
realistic, environment is challenging in two aspects. First,
human models in simulation are very limited. Second, testing
physical systems with real humans can be unsafe. Efforts are
being made to learn safe algorithms [4], but we still lack a
good way to verify safety before deployment.

One way to increase behavioral realism while safely veri-
fying performance is to directly use human input via Mixed
Reality (MR), referring the virtuality continuum ranging
between the completely virtual and the completely real as
defined in [5]. Researchers have suggested ideas for integra-
tion of MR with complex robotics systems for development
and test [6–9]. We can further exploit MR technology as a
tool to train and test robotic systems with humans. A recent
study [10] presented a MR-based framework for validating
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an autonomous vehicle’s performance in the presence of
pedestrians. By creating a virtual environment shared be-
tween the vehicle and pedestrian, the testbed provided a way
to test algorithms under model-free human behavior. While
appreciating the previous studies revealing the value of MR
testbeds in robotics applications, we further contribute more
systematic views of MR testbeds as means of training and
testing algorithms involving human-robot interactions and
also share our implementation design.

II. MR FOR ROBOTIC SYSTEM WITH REALISM

In a MR environment, there are virtual and real entities that
interact with each other and are spatially mapped from real to
virtual, and vice-a-versa. Varied ways to implement MR in-
terfaces allow different levels of virtuality or reality as shown
in Fig. 1. Based on virtualization levels of robots, humans,
and the environment, we may consider (a) fully simulated,
(b-d) MR with virtual robots, (e) MR with real robots, and
(f) fully real. Note that humans can interface with the system
in several ways. Virtual humans mean programmed human
characters. Real humans can be immersed in the virtual scene
using Console, VR, and AR interfaces, or physically present
in the real world.

The foremost concern when deploying or testing robots
near humans is safety. Only in (f), robots can physically harm
people when they share the same environment. We consider
this as the final deployment stage rather than a developing
approach.

The completely virtual approach, Fig. 1 (a), affords sig-
nificant experimental repeatability. This is very common and
useful way to obtain a massive dataset for training as well
as to test low-level algorithms especially in the initial stages
of development. Data collection can be conducted faster than
real time, possibly in parallel, without any spatial restriction.
In configurations (b)-(e) where the virtual characters are
controlled/mapped by real human players, there are three
ways to use the data. First, the data can be added to the
replay buffer during RL training. The data size would be
small because human inputs will not be faster than real time
nor parallelizable, yet this may be useful for refinement or
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Fig. 2: The architecture includes ROS (green) and the Unity
game engine [13] (blue). It consists of a Game Server and clients
connected to the server. The clients include robot clients, and
Console/AR/VR player clients.

meta-testing [11]. Second, the recorded human inputs may
be used to improve the programmed human character for
configuration (a). Third, the data can be used for evaluation
of the algorithm. This is what simulation alone cannot
achieve and what a fully real, physical system cannot achieve
safely. As we envision continued learning problems of a
longer term, all the usages of human data are meaningful.

The similarity between the human’s behavior in the virtual
and real worlds, or “transfer” [12], may depend on many
factors. Among the MR interfaces, a joystick usually pro-
vides the lowest level of transfer, and VR and AR modalities
are capable of a better transfer. Photo-realism, higher frame
rates, or audio effects may affect transfer as well. Overall,
as real components increase (going from (a) to (f)), realism
improves in terms of transfer and fidelity. Improved realism,
however, comes with added cost and expert knowledge.
For example, console interfaces, consisting of just a laptop,
joystick, and headset are relatively inexpensive and easily
deployable, compared with an AR system. Thus, it will be
possible to recruit more human players if with the same
budget. Depending on the development phase or the purpose
of study, we may benefit from a proper choice of mixed-
reality setting.

Other technical considerations beside handling MR de-
vices include that, when virtual and real entities are com-
bined, all of them must spatially align. A low quality
alignment may degrade the user experience of human players
or alter robots’ behavior in an unexpected way.

III. SYSTEM IMPLEMENTATION

In this section, we share a short description of our imple-
mentation of a MR testbed presented in the previous section.
The system architecture is shown in Fig. 2. The Game Server,
responsible for maintaining the game state and scenario
loading, publishes a ground truth message that includes states
of all entities and sensor outputs. Autonomous Non-Player
Characters (NPCs), controlled by behavior trees, can be
added to scale up the number of characters in addition to real
human players. Each robot client subscribes to a command
ROS message allowing the publisher to move the robot and
publishes another message that includes sensor data and its
states. Other clients include Console, VR, and AR clients

Fig. 3: The test environment is derived from photogrammetric re-
constructions [20, 21] of parts of SRI’s Princeton campus (spanning
over 180×120m2). (Left) The actual site, (Right) its virtual replica
as a mesh model.
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Fig. 4: Console (left), VR (middle), and AR (right) interfaces.

Fig. 5: Experiment with real human players (five console players
and two VR players are seen in the figure.)

for human players. The console-based interfaces (Fig. 4, left)
include a gaming laptop, Xbox controller [14], and a headset.
Using the controller, the player can walk, run, pickup/deposit
an object, and more. VR players (Fig. 4, middle) wear an
MSI VR One [15] computational backpack and a VIVE Pro
HMD [16]. They hold a VIVE controller in each hand, and
trackers are mounted on the front waist and both feet. They
can freely walk around a 3.5m x 3.5m play area. The AR
interfaces (Fig. 4, right) are also wearable devices including a
MSI VR One backpack and a Rokoko Smartsuit [17] for full-
body motion capture. The AR headset consists of a Trivisio
HMD [18] paired with a physically mounted Intel Realsense
camera and provides video see-through capabilities. Video
frames and IMU data from the camera are fused with GPS
via visual odometry [19] to provide pose. In our other study
(not published at the moment), we performed experimental
demonstration of the system for a multi-robot multi-person
tracking and monitoring application Fig. 5.

IV. DISCUSSION

We have presented an approach toward human-centered
development of robotic systems using a Mixed-Reality
testbed as well as our implementation of the system. This
provides us a safe way to iterate training/developing/testing
algorithms involving human interactions. Our study was
driven by a safety requirement and a need to have real
humans interact with the system: MR offered the best of
both worlds. We believe that MR testbeds will become
increasingly common given a need for close interaction
between robots and humans.
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