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ABSTRACT 

In order to be effective in the field, the military trains warfighters to operate its many ground vehicles.  The goals of 

training are for the warfighter to learn vehicle and weapon operations and dynamics (e.g., how the vehicle and gun 

turret work and “feel”) in live tactical situations.  Additionally, because many vehicles require multiple operators 

(e.g., a gunner and driver), team coordination is an important element of the tactical training. 

The military employs both live and virtual reality training to achieve these goals.  Live training, especially gunnery, 

requires significant facilities and range infrastructure and is also limited to specific sites due to safely restrictions. 

Such training events generally require travel/transportation to CTCs and ranges. Unfortunately, live training is 

expensive.  In this paper, an augmented reality based vehicle training system is presented. The trainees are able to 

drive on physical terrain and engage virtual entities for tactical and gunnery training.  By augmenting the real world 

using virtual entities and effects, along with existing training aids and devices, training anywhere and anytime is 

enabled. 

The details of the vehicle-borne augmented reality system for augmenting both the driver’s periscope and the 

gunner’s remote weapon sight are presented.  The system relies on inertial measurements, cameras, and GPS to 

provide jitter free, robust and real-time 6-DOF (degree of freedom) pose estimation.  These poses are used to render 

synthetic targets (e.g., dismounts, technical, target) to the driver and gunner.  An iPad style instructor interfaces 

controls the augmented engagement and provides student scores. 

The system is evaluated on an Army Stryker vehicle operating in a real range.  The consistency and quality of target 

insertions between the driver’s three augmented periscopes and the gunner’s augmented weapon sights are 

compared.  The importance of each sensor is evaluated by removing its input and comparing. 
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INTRODUCTION 

Like any complex task, mastering the operation of military vehicles requires training.  This training often includes 

classroom learning where discussions and lectures provide a foundational understanding of the vehicle and tactics.  

Of course, in-vehicle training is essential for operators to learn, and develop the muscle memory for, vehicle and 

weapons control/dynamics.  Further, tactics and team coordination are often practiced as part of the in-vehicle 

exercises.  Although clearly an essential element, in-vehicle training can be costly and access to training ranges 

reduces training frequency.  Additionally, when live munitions are required (e.g., during live gunnery training), 

necessary safety precautions can greatly add to the expense and infrequency.  

As a result of the challenges associated with in-vehicle training, an array of solutions has been developed.  Live 

training (see Table 1) takes place in a real vehicle on an equipped range.  Often, targets pop-up at a set of fixed 

locations or travel along installed rails.  Munitions are live, and safety is a key concern.   The operator drives the real 

vehicle on real terrain and can experience the system’s real dynamics.   

 
Table 1. Comparison of different in-vehicle training approaches 

 Environment Vehicle Targets Weapons Facility Requirements 

Live-fire Real Real Synthetic/Passive Live Equipped range, targets 

Laser-based Real Real Real Simulated Equipped range, Equipped 

vehicle, targets 

Augmented reality Real Real Synthetic/Responsive Simulated Equipped vehicle 

Virtual reality Synthetic Synthetic Synthetic/Responsive Simulated Simulator 

Given the dangers and costs associated with live weapons, laser-based solutions (e.g., MILES) were developed.  An 

advantage of these systems is that, by using a laser instead of live weapons, vehicles and dismounts can jointly train.  

A disadvantage of this approach is that weapons and targets must be equipped with the laser system, and the range 

must be outfitted if performance statistics are desired. 

At the other end of the spectrum, virtual reality solutions provide a video game-style interface.  The environment 

and all system dynamics are synthetic and a simulator is required.  This simulator often includes some physical 

aspect of the vehicle (e.g., dashboard or instrumented weapon).  An advantage of these systems is that any terrain, 

target, and scenario can be simulated.  However, simulators are expensive and the synthetic vehicle dynamics do not 

Figure 2. Augmented views of live video from the periscopes at Ft. 

Benning 

 
Figure 1. Periscope system installed on the 

Stryker 
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often provide a substitute for the real thing. 

This work focuses on an augmented reality (AR) 

alternative designed to address some of these 

shortcomings, as shown in Figure 2.  Augmented 

reality uses a live video feed and overlays 

synthetic targets on top of that video feed.  Using 

video game techniques, the targets are 

transformed to appear as if on the physical 

terrain in the video feed.  As with live-fire and 

laser-based training, the environment and vehicle 

are real.  Similar to virtual reality, the targets are 

simulated and can be made responsive to the 

trainees’ actions.  Weapons are simulated, and 

performance statistics can be gathered.  As with 

all solutions, some infrastructure is required, but 

only the vehicle must be equipped with the AR system. 

In this paper, the AR training system is described.  As a motivating example, an Army Stryker vehicle is outfitted.  

In particular, augmented displays for the driver’s three periscopes and the gunner’s remote weapon station (RWS) 

fire control unit (FCU) are provided.  All four AR units are synchronized and display the same augmented targets, 

allowing the driver and gunner to not only practice their individual functions but also their team coordination.   

A complete AR system has two main components: (1) a localization system which provides the pose of the vehicle 

and (2) a rendering system which displays the synthetic targets which would be visible at the current pose.  Both 

qualitative and quantitative analysis of the system’s performance is provided.  Specifically, the consistency of the 

AR renderings between the periscopes and the FCU are examined.  Because the quality of the renderings depends on 

the localization quality, localization against ground truth is compared.  Further, the importance of each sensor and 

how it contributes to the final result is examined. 

In the Technical Approach section, the system hardware is presented, and in the Algorithms section the navigation, 

rendering, and foreground obstacle modelling software components are discussed.  Finally, the Vehicle Integration 

is discussed and results 

from experiments are 

presented. 

TECHNICAL 

APPROACH 

The objective of the 

system is to provide an 

AR, vehicle-borne 

training system on the 

Stryker vehicle.  The three 

periscopes of the driver 

and the RWS FCU 

display of the gunner are 

augmented.  In this 

section, the hardware 

system is described.  

Figure 4 depicts a system 

block diagram.  The 

periscope-mounted 

system includes three 

sensor packages, one 

mounted immediately 

 
Figure 3.  The driver’s periscopes and the RWS display of 

the Stryker vehicle are augmented as a motivating example. 

 
Figure 4. The system block diagram shows four basic AR sensor packages (periscope x3 

and RWS) and the displays (three periscope displays and FCU display). 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015 

2015 Paper No. 15180 Page 5 of 12 

above each of the driver’s periscopes.  The RWS sensor package, along with the 

PC, is mounted on the turret, above the pan-tilt joints.  For the RWS, the AR 

entities are rendered on the digital video; the video is then converted to analog 

and injected to be displayed on the real FCU. 

Periscope Sensor Package 

As suggested in Figure 5, the driver’s three periscopes reflect light to the driver, 

while protecting him from direct enemy fire.  In order to augment these views, a 

sensing package is mounted directly above the periscope and an easily removable 

LCD is installed over the periscope viewport (Figure 6).  This sensing package 

consists of:  

 

Two Allied Vision GT1920 GigE cameras. The first “augmentation” camera is 

a color camera and located immediately above the periscope (as suggested in  

1. Figure 6).  The second “navigation” camera is 30cm above the first 

camera and used as the primary navigation camera (see Algorithms).  

Both cameras run at 20Hz and have a horizontal field of view (FOV) of 

about 50 degrees. 

2. Microstrain 3DM-GX3 IMU.  The Inertial Measurement Unit (IMU) 

provides high frequency acceleration and rotational rate data which 

captures high speed movements.   

3. Custom trigger board.  The Arduino-based trigger board provides a 

20Hz signal which synchronizes the cameras, IMU, and GPS. 

4. uBlox GPS receiver.  The uBlox GPS receiver is not strictly necessary, 

but provides a convenient way to provide a GPS timestamp with every 

trigger pulse.  This allows the three periscopes to be synchronized 

without requiring a shared trigger. 

5. GPS heading receiver.  The SITEX is a dual-antenna marine GPS 

receiver which provides heading information, especially important when 

the vehicle is not moving.  A single SITEX is shared between all periscopes. 

6. Differential GPS receiver.  The Trimble receiver integrates corrections from an optional, nearby 

base-station to provide centimeter-accurate latitude and longitude.  A single Trimble system is shared by 

the periscopes. 

7. Computational payload.  All localization and rendering is performed in real-time on-board the vehicle 

using an Intel i7 3GHz small form-factor computer. 

Remote Weapon Station (RWS) Sensor Package 

Generally, the RWS consists of a pan-tilt weapons mount on the vehicle’s exterior, controlled from the FCU within 

the vehicle’s cabin.  The user interfaces to the FCU via push-buttons and control grip (joystick); a live video feed is 

displayed on the FCU 

monitor for the operator.  

Beneath the RWS weapon 

mount is the Sight Servo 

Assembly (SSA), connected 

by another rotational joint to 

correct for weapon elevation 

and parallax.  The RWS’ 

native sensor package 

includes an electro-optical 

(EO) visible light camera, 

long-wave infrared (LWIR) 

camera, and optional laser 

range finder (LRF).   

 
Figure 5.  The original periscope 

reflects light to the driver. 

 
Figure 6. The augmented reality 

periscope projects the view from 

an adjacent camera to an LCD 

 
Figure 7. The RWS sensor package is installed on the gun mount and the 

computational payload replaces the ammo box. 
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The goal of the RWS augmentation is to render artificial entities on the variable zoom EO and LWIR cameras.  As 

described in the Vehicle Integration section, the video feeds from the RWS’ native sensor are interrupted and signals 

from surrogate EO and LWIR cameras are injected.  (In future work, the native EO and LWIR sensors could be 

augmented, but using surrogate cameras allowed us to conduct experiments on a test vehicle when the Stryker was 

not available.)  As a result, the sensor package for the RWS is similar to the periscope package described previously.  

The two significant additions are (1) a FLIR Tau2 640x480 LWIR camera and Ophir SpIR variable zoom lens, and 

(2) an Allied Vision GT1380C camera with a Fuji H22x11.5A-M41 zoom lens.  Figure 7 (left) shows the installed 

RWS sensor package; on the right, the FCU monitor displays AR targets to the operator. 

ALGORITHMS 

The block diagram in Figure 8 illustrates the different system algorithms.  Each Periscope Block is identical and 

similar to the RWS Block.  The four blocks are connected over a single Ethernet backbone, over which differential 

GPS, orientation GPS, navigation data, and AR-entity status (e.g., position of moving objects) is shared.  Each block 

consists of an AR-Renderer which renders the AR targets visible from the current pose, provided by the Navigation 

Module.  A Terrain Database provides the Navigation module with a reliable mean sea level height.  It is also used 

by the AR-Renderer to generate targets that “sit” on the ground, hide behind terrain, and can follow terrain features 

as they drive.  The terrain map is particularly important for generating targets that are realistic and can appear from 

behind terrain features during training. 

The RWS Block also has several unique modules which allow it to interface with the RWS and FCU.  In particular, 

the signals to the EO camera, LWIR camera, LRF and gun are decoded.  This allows the augmentations to be 

displayed on the real FCU.  In the following sections, the Navigation Module and the AR-Renderer are detailed. 

Navigation Module 

Past experience with AR (Oskiper, 2011) suggests that in order to produce a compelling AR experience, the jitter 

and latency must be tightly controlled.  Jitter refers to how a rendered entity “jumps around” on the screen.  Jitter of 

more than 1 pixel is easily detectable by the human eye.  Latency refers the delay between AR target movement and 

movement of the environment.  When latency is more than 1 frame (~1/20 of a second), the targets appear to float 

 
Figure 8. Algorithm data flow 
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above and below the ground and lag the motion caused by the vehicle.  Jitter and latency are caused by noise in the 

pose estimates from localization and latency in the pose calculation, respectively. 

The Navigation Module builds on previous work (Oskiper, 2012) which uses an error-state (indirect) Extended 

Kalman Filter (EKF) to fuse measurements from the IMU, cameras, and GPS.  Many filtering solutions require an 

estimate of the platform dynamics to propagate the state forward.  The error-state (EKF) does not require these 

unknown and difficult to estimate dynamics. This is because the filter estimates not the vehicle state, but rather the 

error between the IMU and the vehicle state.  This formulation is advantageous because, first, it preserves the high-

frequency IMU motions -- especially appropriate for vehicles which vibrate when idle and travel over rough terrain.  

Second, the highly non-linear vehicle state is replaced by the more linear error state, and more easily estimated by an 

EKF. 

The reader is referred to (Oskiper, 2012 and Oskiper, 2011) for complete details, but an overview of the indirect 

EKF is provided here for completeness.  The filter provides 6-DOF pose estimates for navigation by generating 

relative visual measurements at the feature track level and marginalizing out the 3D feature points, obtained via 

multi-view triangulation, from the measurement model. This reduces the state vector size and makes real time 

implementation possible by keeping computational complexity linear in the number of features. The algorithm 

incorporates two cameras (both employed in monocular fashion) and additional global measurements in the form of 

global heading from the SITEX GPS. 

The total (full) states of the filter consist of the IMU location IGT
, the gyroscope bias vector gb

, velocity vector 

IGv  in global coordinate frame, accelerometer bias vector ab  and ground to IMU orientation GIq , expressed in 

terms of the quaternion representation for rotation (Kuipers, 1998).  Hence, the total (full) state vector is given by  

.][= TT

IG

T

a

T

IG

T

g

T

GI Tbvbqs  

During filter operation, ground to IMU pose GIP  is predicted prior to each update instant by propagating the 

previous estimate using all the IMU readings between the current and previous video frames via IMU mechanization 

equations. After each update, estimates of the errors (which form the error-states of the filter) are fed-back to correct 

the predicted pose before it is propagated to the next update and so on. 

In this work, the new SITEX heading sensor is integrated.  This sensor uses two GPS receivers to measure the 

sensor’s absolute heading, a direct (albeit rotated) measurement of IGq .  The innovation associated with this global 

measurement can be calculated by converting SIGI qq ⊗−  to SGR , where SIq  is the calibrated SITEX reference 

frame expressed in the IMU frame and SGR  is the rotation matrix representing the orientation of the SITEX in the 

ground frame.  The expected heading is then � � atan ����	
, where � is the third column of SGR .  The heading is not 

calculated using a rotation matrix to Euler angle conversion, because such a conversion would give incorrect results.  

This is because the physical SITEX measures a heading by projecting the two receivers onto a 2D plane and neither 

of the other two orientations are considered. 

Rendering 

The Rendering subsystem creates a virtual world that closely 

represents the real world around the vehicle.  Accurate terrain 

elevation data is used to generate a 3D polygonal model of the 

area and the tracking system informs the renderer where in the 

virtual model the vehicle is placed.  An accurate camera pose 

and corresponding imagery captured from both the electro-

optical (EO) and infrared (IR) cameras form the basis of the 

augmented imagery presented to the trainee. 

For each frame, the system first copies the video imagery as it 

was received from the camera.  Then, the system uses the 

camera pose and projection matrix (representing the current 
 

Figure 9 - Instructor Tablet 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015 

2015 Paper No. 15180 Page 8 of 12 

camera settings) to render the 3D terrain model into a depth buffer.  Next, any virtual entities/effects are rendered to 

the scene with the depth buffer ensuring items blocked by terrain features will be occluded.  The edges of virtual 

entities are slightly blurred with the camera imagery. This avoids the virtual entities appearing artificially sharp 

against the very good, but less than perfect, real world background generated by the real system’s sensors and 

display.  The rendering system is built using the Unity 3D game engine.  This allowed for the easy inclusion of 

animated characters and shadow effects that add to the realism of the generated scene.   

Instructor Tablet / Scenario Capabilities 

Since this system was designed to facilitate gunnery training, the software allows for creation of scenarios that 

resemble live fire training events.  The system has the ability to simulate BTRs, T-72s, Technical Pickups, and 

dismounted enemy combatants.  The entities are simulated using the Unity game engine and can be commanded to 

move from point to point while taking damage as appropriate.  The vehicles have the ability to drive out of and into 

virtual fighting positions that conceal the vehicle from the Stryker.  If targets are not engaged within the specified 

period of time, they can return to the fighting position.  This allows the instructor to control target exposure times in 

a way similar to those utilized in gunnery tables on live-fire ranges. Destroyed vehicles can be configured to remove 

themselves from the scene or to remain, depending on the instructor’s intent.  Instructors oversee training from the 

Instructor tablet that provides system monitoring/control as well as scenario authoring capabilities. The Instructor 

tablet connects to the system via Wi-Fi, and the scenario is simulated directly on the rendering computer. 

Foreground Obscurations 

As shown in Figure 10, the view from the periscopes is partially occluded for some configurations of the Stryker.  

Here, the armor obscures the bottom of the camera’s view; an artificial target rendered in this area would incorrectly 

appear to be in front of the armor.  The solution is to calculate a foreground mask and apply this mask to the 

rendered entities.  In this way, targets are occluded by the armor, just as are real objects. 

   
Figure 10. The view from the periscopes on some Strykers is partially obscured by the armor (left).  A foreground mask is 

calculated (middle) and thresholded (right) during a calibration procedure where the Stryker is driven around. 

It is not practical to manually create the foreground mask, as the armor is complex and slightly different on each 

vehicle.  Instead, data is collected during a calibration procedure by simply recording the video while driving.  Then, 

in an offline step, a background detection algorithm produces a foreground mask (Figure 10, right).  An OpenCV 

(Bradski, 2000) background detection algorithm, bgs���, is used which accepts an input frame, �, and returns a 

binary mask highlighting pixels different from the last frame.  This algorithm is suitable for background detection; 

that is, it removes parts of the scene which do not change.  However, it is desired to remove parts of the frame that 

do change.  Thus, integration and thresholding are performed as ∑ bgs���� > �.  An example of the integrated 

image is shown in Figure 10 (middle).  The threshold, �, is manually selected to produce the final mask shown in 

Figure 10 (right). 

VEHICLE INTEGRATION 

The system is installed on both a Stryker vehicle at Ft. Benning, Columbus, GA (Figure 11, top) and on a surrogate 

test vehicle (Figure 12) for testing.  The periscopes are standalone and simply bolt to the vehicle.  Power 

conditioning, displays and computation are mounted inside the vehicle.  The RWS sensor package integrates with 

the FCU (see Figure 8) to tap into the control grip, EO camera, LWIR camera, and LRF messages.  The RWS sensor 
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package injects analog video back into the FCU, bypassing the real EO and LWIR camera feeds.  In this way, the 

driver simply looks at displays in front of his periscopes and the gunner uses the actual FCU. 

EXPERIMENTS & RESULTS 

Figure 13 shows augmented views from the RWS.  Here, the background video is in grayscale and highlights the 

augmented entities.  For the left view, the camera zoom is set to ~3 degrees horizontal FOV; the right view is set to 

~60 degrees.  In future work, the full variable zoom capability of the camera will be supported. 

In order to qualitatively test the consistency of the renderings between the narrow FOV RWS, wide FOV RWS, and 

periscope cameras, an AR target is placed in the scene and viewed from three different cameras.  The first row of 

Figure 14 shows the operator’s view of the same AR vehicle.  The second row shows post-processed views (digitally 

zoomed) of the periscope and wide FOV RWS views for comparison.  The RWS cameras (b,c) agree well, within a 

pixel of the wide FOV camera.  There is some difference noticeable between the narrow RWS (b) and periscope 

cameras (a).  However, this 40 pixel shift (half the radar dish) is actually correct for a target at 250m and results 

from the displacement between the periscope and RWS cameras (about 0.75m). 

Navigation 

The ability to accurately render targets depends on the accuracy of the 

localization.  As discussed in the Technical Approach section, a variety of 

sensors for localization are employed.  Here, the contribution of two new 

sensors, the differential and heading GPS systems, are analyzed.  Data over 

the three routes shown in Figure 15, ranging from ~640km to ~3km, is 

collected.  All routes start and stop at the same “parking spot.”  As 

expected, good general agreement between the raw differential GPS and the 

estimated path (which itself uses differential GPS) can be noted. 

Ideally, it is desired to compare the estimated localization with known 

ground truth at every time.  Lacking such universal ground truth, however, 

error is measured when ground truth is available.  First, note that all three 

paths start and stop at nearly the same point; thus, ground truth indicates 

that the start and stop locations should be at the same point.  Second, the 

 

 

 

Figure 11.  The periscope system installed on the Stryker (top) and a 

close-up of the RWS sensor package (bottom) 

Figure 12. To test the system, a surrogate 

vehicle is used 

 
Figure 13. Augmented views from the 

RWS on the surrogate test vehicle 
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paths (a) and (b) travel on relatively flat, paved roadways.  Thus, ground truth indicates that the vertical travel 

should be small.  As shown in Table 2, less than a meter of error at the end of the loops and less than two degrees of 

heading error is experienced.   

Next, how the differential and heading GPS affect the system is analyzed.  In Table 3, the difference is shown 

between a system configuration with all sensors and with certain sensors removed or replaced.  Although the 

heading sensor can be removed, some estimate of heading is needed to initialize the filter.  For example, in previous 

work (Oskiper, 2012), a manual landmark procedure was used.  In order to test the system without the heading 

sensor, the first measurement from the SITEX is used; after that first measurement, no further heading 

measurements are fused.  A Trimble differential GPS is used, and to test the system without it, a lower-quality, 

standard GPS, the XSens is substituted.  The degradation in Test 1 shows that the SITEX affects the position 

estimate by about 0.52m; it is not surprising that an improved heading helps the position estimate, as they are 

correlated.  In Test 2, the Xsens is used instead of the Trimble; as a result, the difference is about 2m.  In Test 3, the 

XSens and lack of SITEX result in a difference of about 2.13m, the majority of which appears to be attributable to 

the missing Trimble. 
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 (a) Periscope 1 Camera (b) Narrow FOV RWS Camera (c) Wide FOV RWS Camera 

 Figure 14. The top row shows the operator’s view of the same AR target from three different cameras.  The bottom 

row shows digitally zoomed views of the (a) and (c) cameras for comparison with (b).  The difference between (a) and 

(b) is due to the physical camera offset for a 250m target. 

 

 

   
Path (a), 640m Path (b), 2.6km Path (c), 3.0km 

Figure 15. Blue shows the differential GPS path, and red shows the estimated path using all sensors (including differential 

GPS).  Paths (a) and (b) are on improved roadways; path (c) is partially off-road with elevation changes. 
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Table 2. Localization errors at loop closure and versus assumed level ground 

Path 2D Translational Loop RMSE (m) Heading Loop Error (deg) Vertical RMSE (m) 

(a) 0.37 -1.85 1.13 

(b) 0.60 0.94 1.87 

(c) 0.74 -0.37 N/A 

 

 
Table 3. Root mean squared difference in position between filter output with all sensors and partial sensors 

Path Test 1 

One Heading Measurement & 

Differential GPS (m) 

Test 2 

Heading GPS & 

Standard GPS (m) 

Test 3 

One Heading Measurement & 

Standard GPS (m) 

(a) 0.44 1.89 1.96 

(b) 0.86 2.03 2.36 

(c) 0.28 2.03 2.07 

Mean 0.52 1.98 2.13 

In Table 4, the differences are shown for the same experiments for rotational error.  In Test 1 and Test 3, a 

difference of 1.49 degrees and 1.83 degrees are present when the SITEX is removed.  This is not surprising, as this 

sensor provides a heading estimate.  The quality of the GPS position also affects heading as evident in Test2; 1.07 

degrees of difference can be seen when the Xsens is used. 

 
Table 4. Root mean squared difference in orientation between filter output with all sensors and partial sensors 

Path Test 1 

One Heading Measurement & 

Differential GPS (deg) 

Test 2 

Heading GPS & 

Standard GPS (deg) 

Test 3 

One Heading Measurement & 

Standard GPS (deg) 

(a) 2.18 1.42 2.82 

(b) 1.48 1.33 1.56 

(c) 0.82 0.46 1.11 

mean 1.49 1.07 1.83 

Finally, the same data set from Figure 14 is used and the jitter and drift of the AR insertion over the 500 frame 

sequence are observed.   The tank jittered and drifted less than 10 pixels for the narrow FOV camera, corresponding 

to an angle accuracy of less than 0.05 degrees. 

CONCLUSIONS 

The augmented reality solution for training on vehicles has been discussed.  Future work will continue to focus on 

the RWS, integrating the full variable zoom and focus capabilities of the EO/LWIR cameras.  The work will include 

a variable-zoom calibration technique and variable zoom and focus rendering techniques.  With that capability, the 

gunner will be able to engage virtual targets using the same camera controls as during live-fire training. 
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